正多面体(Platonic solids)

为了方便建模,这里集合一些正多面体的外接球半径与边长的关系。参考:https://en.wikipedia.org/wiki/Regular_polyhedron

正四面体(Tetrahedron)

四面体

R=64a0.6123a    a1.6330RR = \frac{\sqrt{6}}{4}a \approx 0.6123 a \iff a \approx 1.6330 R

其中RR代表外接球半径,aa代表边长,下同。

参考:https://en.wikipedia.org/wiki/Tetrahedron

立方体(正六面体,Cube)

六面体

R=32a0.8660a    a1.1547RR = \frac{\sqrt{3}}{2}a \approx 0.8660 a \iff a \approx 1.1547 R

参考:https://en.wikipedia.org/wiki/Cube

八面体(Octahedron)

八面体

R=22a0.707a    a1.4142RR = \frac{\sqrt{2}}{2}a \approx 0.707 a \iff a \approx 1.4142R

参考:https://en.wikipedia.org/wiki/Octahedron

十二面体(Dodecahedron)

十二面体

R=321+52a1.4013a    a0.7136RR = \frac{\sqrt{3}}{2}\cdot \frac{1+\sqrt{5}}{2}a \approx 1.4013 a \iff a \approx 0.7136 R

参考:https://en.wikipedia.org/wiki/Regular_dodecahedron

正二十面体(Icosahedron)

正二十面体

R=a410+25=asin2π50.9511a    a1.0515RR = \frac{a}{4}\sqrt{10 + 2\sqrt{5}} = a\sin\frac{2\pi}{5} \approx 0.9511 a \iff a \approx 1.0515 R

参考:https://en.wikipedia.org/wiki/Regular_icosahedron